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Mission Statements 
 

The Mississippi Department of Transportation (MDOT) 

MDOT is responsible for providing a safe intermodal transportation network that is planned, 
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MDOT Research Division supports MDOT’s mission by administering Mississippi’s State 
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Executive Summary 
The continuous investigation into the mechanical properties and rehabilitation management of existing 

pavements is crucial for the sustainability and efficiency of transportation systems. The evolving landscape 

of transportation technology demands a proactive approach to address challenges in pavement systems. 

With over 40 million records in the Mississippi Department of Transportation (MDOT) database, efficient 

utilization of this extensive data requires modernized decision-making processes and models aligned with 

contemporary design methods and materials. MDOT's pavement management program, initiated in 

collaboration with the University of Mississippi, set the foundation for decision-making models. However, 

the existing Markov transition matrices, developed over three decades ago, no longer align with recent 

advancements in material science and pavement design. This research aims to update and enhance these 

models to accurately reflect the current state of transportation infrastructure, considering the voluminous 

and diverse data collected annually. The research methodology employs Artificial Neural Networks 

(ANNs), cutting-edge computational tools inspired by biological neural systems. The proposed four-year 

project involves investigating existing MDOT models, conducting a literature review on pavement 

management system (PMS) performance and modeling, and building a comprehensive database. The study 

focuses on dynamic sequential ANNs to develop performance prediction models for flexible, rigid, and 

composite pavements, utilizing distress data from Mississippi pavement sections. For flexible pavement, 

significant efforts led to a robust database with over 40,000 entries. The developed model shows promising 

outcomes, effectively capturing the dynamic nature of pavement deterioration. Recommendations include 

further study on significant changes and separate models for distinct deterioration patterns. In rigid 

pavements (JCP and CRCP), despite smaller datasets, both models exhibit robust statistical accuracy 

measures. They highlight their effectiveness in capturing pavement behavior. However, the study 

recommends incorporating more data spanning the entire lifespan of CRCP and JCP for comprehensive 

insights into long-term performance. The composite pavement model displays promising statistical 

accuracy measures but reveals inconsistencies in minor rehabilitation efforts. Careful examination and 

consideration of minor rehabilitation responses are advised. Despite utilizing a significant amount of data, 

further calibration trials and the inclusion of composite pavement characteristics in the database are 

recommended for improved model performance.  

In summary, the developed models proficiently depict pavement responses. Accessible through a user-

friendly interface, these models are poised to achieve heightened accuracy through additional surveys and 

ongoing calibration efforts. The study strongly promotes the seamless integration of advanced 

computational tools and methodologies into MDOT's pavement management system. This integration is 

anticipated to streamline the prioritization of resources, enabling optimized planning for maintenance and 

rehabilitation actions. The ultimate goal is to achieve time and cost savings while enhancing the overall 

efficiency of MDOT's pavement management practices.   
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Project Background 

Introduction 
Ongoing investigations of the mechanical properties of existing pavements and their rehabilitation 

management have been crucial for the continuation of an uninterrupted transportation system. Such 

investigations require well-coordinated field measurements and a comprehensive decision-making process 

to overcome some of the upcoming issues in pavement systems. As the equipment to collect data in 

transportation systems has been constantly improved and updated, more data with higher resolution is 

collected and thousands of datasets are available. During a typical one-year survey, approximately 27,250 

miles of survey data are collected from state, interstate, and non-interstate highways, as well as freeway 

expressways or other principal arterial routes. Currently, there are over 40 million records in the Mississippi 

Department of Transportation (MDOT) database system. The data that is collected includes condition, 

distress, friction, curve and grade, mean roughness index, global positioning system (GPS) location, 360-

degree images, and roadway images. 

Mississippi Department of Transportation (MDOT) began a pavement management program in the late 

1980s through a research collaboration with the University of Mississippi. The early work in this program 

resulted in sets of models that were utilized for decision-making. Later on, Markov transition matrices were 

developed to estimate the probability of a pavement section moving from one state of distress to a state of 

more severe distress within one year given a specific pavement preservation action. Among all different 

pavement condition indices used to assess pavement surface conditions, MDOT utilizes the Pavement 

Condition Rating (PCR) and International Roughness Index (IRI), which are the most widely used and well-

recognized pavement performance indicators to make a timely decision and maintenance schedule. 

However, existing models were developed over 30 years ago. Since that time, the design methods, 

materials, and construction practices have been updated to the latest technology based on cutting-edge 

research in material science and pavement design. Previously developed models are no longer valid for the 

new design methods and material changes.  

Decision support systems in transportation applications must work rapidly to ensure maintenance 

without delay and reduce serious issues regarding traffic operations. MDOT Planning Division relies on 

prediction models to estimate the performance of the pavement systems for upcoming maintenance and 

rehabilitation actions. Timely actions will result in efficiently planned maintenance and rehabilitation 

schedules, which will save MDOT money and time. Therefore, the development of more advanced 

pavement performance models using modeling techniques that are more intelligent, inclusive, reliable, and 

accurate when estimating future pavement conditions, identifying rehabilitation needs, and analyzing 

rehabilitation impacts. Advanced modeling techniques utilizing machine learning techniques showed 

promising results in predicting pavement deterioration, offering significant improvements over traditional 

techniques by processing large volumes of data with a higher degree of accuracy (Barros 2021; Barros et 

al. 2022d, c, f; a; Bashar and Torres-Machi 2021).  

The Artificial Neural Networks (ANNs) approach is a very powerful computational tool that emulates 

the biological neural system. It consists of three or more layers: input, hidden, and output, and each layer 

is made of neurons located in multiple interconnected layers where the computations are performed. ANNs 

learn by providing sample observations of the phenomenon to be modeled. ANNs are highly capable 

learning systems that allow the exploration of complex relationships and have been used by researchers, 

government agencies, and companies because they can be integrated into a decision-support system. The 

number of data used for training ANNs plays an important role in the accuracy of the prediction models. 

The available historical data can be used for training, testing, and cross-validation for reliable prediction 
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models using the ANN approach. The developed ANNs models can be used for sensitivity analysis, which 

is performed to explore the projected future estimates as well as the historic development of the predictions.  

ANNs models need to be trained on large datasets to minimize the error when generalizing physical 

phenomena and patterns to ultimately develop an effective decision-making system. Also, by integrating 

additional parameters into the ANN models they can be optimized for improved reliability. 

Pavement management systems (PMS) data has been continuously collected by MDOT and needs to be 

utilized for better characterization of the PMS performance. Artificial Neural Networks (ANNs) 

methodology has been widely used in many applications and is an attractive alternative approach for 

developing accurate prediction models because it can produce meaningful and cost-effective solutions even 

when input data are incomplete, contain errors, or have trend inconsistencies. The rate of deterioration of 

the pavement and its condition needs to be predicted so that the type, cost, and timing of the maintenance 

can be estimated. 

Combined with a review of the independent variables to be included and a new data set including the 

inconsistent deflection data, the ANNs approach is a very suitable method for developing new PMS models. 

The proposed research project will explore the application of neural network technology to develop PMS 

performance prediction models for use in the MDOT pavement management system.  

Research Objectives 
To address the needs described in the previous section, this research has the following objectives: 

• Investigate the existing MDOT models and their significance to current field practices.  

• Conduct a literature review on PMS performance and modeling  

• Build a database from previously collected data 

• Perform analysis to identify the significance of variable to desired outputs  

• Establish meaningful goodness of fit metrics  

• Establish the data sets to be utilized in model development 

• Develop a methodology for utilizing the inconsistent deflection data 

• Establish neural network-based PMS performance models 

• Develop a user-friendly interface to be easily utilized by MDOT personnel and provide 

help integrating the models into the MDOT PMS system 

• Perform sensitivity analysis for future and past projections    

Research Plan  
A research plan was developed to describe the activities that were conducted to accomplish the research 

objectives. The tasks are explained, as follows: (Note that C stands for PIs/Consultant’s Task and M implies 

MDOT’s Task)  
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Task 1M: MDOT will provide the existing models. MDOT will compile the existing Markov transition 

models from MDOT’s PMS network and provide them to PIs. All the necessary information that is included 

in the models will be explained to PIs.  

Task 1C: PIs will evaluate existing Markov transition models based on MDOT’s description. The 

models will be studied in order to evaluate their strength and weaknesses.  

Task 2C: Review literature on related existing research on pavement management systems that are based 

on Markov transition models and Artificial Neural Networks.  

Task 3C: PIs will clean, organize, and cluster the raw data provided by MDOT personnel for ANNs 

modeling purposes. PIs will conduct statistical analysis to understand the significance and the relationship 

between the database variables. In this task, the number of prediction models for each pavement type will 

be determined. Variability in the models will carefully be considered for broader solution space.  

Task 2M: MDOT will look at the organized data and provides feedback. Based on the statistical analysis 

and performance-based considerations, database components are reorganized and clustered for each 

pavement type based on MDOT’s decision support system needs.  

Task 4C: PMS performance prediction model is utilized for Artificial Neural Networks Modeling for 

Asphalt Pavement – Flexible pavement (flex) systems on state, interstate, non-interstate highways, and 

other highways. PIs will have weekly meetings to discuss the progress of the ongoing model development 

stages and determine the necessary modifications for the upcoming meeting.  

Task 3M: The model for Asphalt Pavement – Flex Systems is presented to MDOT. The progress on the 

developed models will be presented to MDOT personnel to collect feedback for making necessary 

adjustments in the models. The integration of these models into the hybrid decision support system is carried 

out along with the next task.  

Task 5C: Artificial Neural Networks Modeling approach for Composite Pavement – JCP data analysis 

will be performed on state, interstate, non-interstate highways, and other highways. Similarly, the organized 

database for composite pavement in Task 3C is utilized for ANNs modeling. Weekly meetings with 

graduate and undergraduate students are held to discuss the progress on the performance of the prediction 

models and their significance.   

Task 4M: The developed Composite Pavement- JCP model will be presented to MDOT personnel and 

feedback on state, interstate, non-interstate highways, and other highways will be collected. The necessary 

adjustments and modifications to models are noted. ANN models are retrained with the modified 

parameters, if needed, for the finalized prediction model.   

Task 6C: Jointed Concrete Pavement Systems database on state, interstate, non-interstate highways, and 

other highways will be explored for ANNs modeling. Training ANN models over the weeks is performed 

by the students. The statistical accuracy measures are discussed in weekly meetings and recommended 

adjustments are made for reaching the ultimate performance of ANNs modeling technique.  

Task 5M: Jointed Concrete system prediction models are presented to MDOT on various applications 

throughout the Mississippi pavement sections. Recommended changes to improve the models are 

highlighted by the MDOT personnel. The developed models are retrained for the final version of the 

prediction models.   

Task 7C: The last ANNs model for Continuously Reinforced Concrete Pavement Systems on state, 

interstate, non-interstate highways, and other highways will be developed for the PMS prediction model. 

Trained models are discussed weekly and their statistical accuracy performances are compared to other 
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developed models to consider the outstanding model for the decision support system. Along with the last 

ANN model for Continuously Reinforced Concrete Pavement Systems, the Hybrid Decision Making 

System (HDMS) is developed by integrating all the models into one system. This integrated system will 

also include MDOT decision support trees to enhance quick rehabilitation decisions in one system.   

Task 6M: PIs will present all the models to MDOT personnel along with the sensitivity analysis for the 

projected prediction capability of the models. HDMS tool is fully explained and MDOT personnel is trained 

on how to utilize the HDMS system and the integrated models in the system. If necessary, PIs help 

programming these models into the MDOT decision system.  

Task 8C: Based on the feedback from MDOT personnel, changes to improve the final models will be 

performed. The finalized models are delivered to MDOT. PIs write a final report including all the model 

specifications and the results. 
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Literature Review 

Machine Learning  

Overview of Machine Learning 

Machine Learning (ML) is the science of making computers learn and act intelligently and improving 

their learning over time by feeding them data and information with observations and real-world interactions. 

The fundamental goal of the ML algorithms is to generalize beyond the training samples to successfully 

interpret data that it has never seen before (Faggella 2020). Several types of machine learning algorithms 

(i.e., K-nearest neighbor, support vector machines, naive Bayes, logistic regression, decision trees, artificial 

neural networks, Bayesian networks, conditional random fields, etc.) have been developed and used to 

process large volumes of data with high degrees of accuracy, handle noisy and complex data, solve non-

linear problems, and once trained, make predictions and generalizations at any time (Bashar and Torres-

Machi 2021; Darko et al. 2020).  

The machine learning techniques hold significant potential for building a modern and robust pavement 

system management due to the excellence in automation and pattern recognition (Bashar and Torres-Machi 

2021). The literature review shows that artificial neural networks are not only one of the first machine 

learning techniques to be used but also the most used technique in civil and pavement engineering (Adeli 

2001; Ceylan et al. 2014). Because ML has a data-driven approach, IRI appears as a suitable indicator for 

modeling, since it is widely available in pavement databases (e.g., LTPP database), measured by objective 

means (e.g., laser profilometer), and known as one of the most common indicators for pavement 

performance evaluation (Marcelino et al. 2021). In this project, an artificial neural network technique was 

used for the development of pavement performance prediction models for flexible, rigid, and composite 

pavements. 

Artificial Neural Networks 

Overview of ANN 

An artificial neural network is an information-processing system based on mathematical models that use 

the concept of human cognition and neural biology (Najjar and Huang 2007). The ANN method attempts 

to emulate the structure and/or functional aspects of biological neural networks (Yasarer 2010). It consists 

of several simple processing elements called neurons (or nodes) and connecting links between them. When 

the information is processed, the connection links are used to transfer signals between neurons (Najjar and 

Huang 2007). Each neuron evaluates its input signals to determine its output signal and transmits it to all 

neurons that are on the receiving side of the connection links originating in the transmitting neuron. Each 

connection has an associated weight that multiplies the signal transmitted (Najjar and Huang 2007). 

Complex relationships that are difficult to reproduce using traditional sequential, logic-based modeling and 

computation technics can be successfully represented by neural networks. However, the accuracy of ANN 

models is highly dependent on the accuracy of the database used to train the neural network. For this reason, 

the database cannot contain a significant amount of erroneous data or be too small, otherwise, the ANN 

model will generate significantly inaccurate or wrong predictions (Yasarer 2010). There are many types of 

neural networks characterized by their architecture, training algorithm, and activation function (Fausett 

2005) as explained in the next sections. 

ANN Elements and Architecture  

The most simple and essential element of a neural network is called a neuron, which imitates the 

biological neurons from the nervous system. These neurons are a part of the ANN architecture that also 
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consists of four main elements: input layer, hidden layer(s), an output layer, and connection weights 

(Tennant Duckworth 2020). Figure 1 shows an example of a typical ANN architecture.  

  

Figure 1. Example of Typical ANN Architecture 

The layers presented in Figure 1 are described as follows (Sultana 2021; Yasarer 2013):  

• Input Layer: It consists of independent variables that are used in the model. 

• Hidden Layer(s): The hidden layer(s) can consist of one or more layers, and each layer can 

contain a different number of hidden nodes.  

• Output Layer: It consists of the dependent variable used in the model. It can contain one or more 

output nodes.  

Feed-Forward Network and Error Backpropagation Learning Algorithm 

In this research, a feed-forward neural network with a back-propagation training algorithm was used for 

the development of pavement prediction models for asphalt, concrete, and composite pavements. The neural 

network gains its knowledge through a trained feed-forward network that uses a set of training data 

consisting of inputs (independent variables) and output(s) (dependent variable(s)). The resulted output is 

compared to the target values and the back-propagation process adjusts the connection weight to reduce the 

error between actual and target values (Jaafar 2019). After training, the network provides an approximate 

functional mapping of any input pattern onto its corresponding output pattern. Then, the validation process 

was carried out using datasets that were excluded from the model database (Jaafar 2019). After the 

validation process, it is necessary to retrain the best-performing network using all experimental data to 

increase the prediction accuracy and account for all patterns in the database (Yasarer 2010). 

This project used different databases that contain both categorical and continuous variables. For this 

reason, the model development considered only one hidden layer. The use of more than one hidden layer 

combined with an insufficient number of databases may cause the network to memorize the data in the 

training phase. Therefore, the developed model used only one hidden layer to maintain the generalization 

capability of the network (Yasarer 2013).  

Learning Algorithm  

Nodal Input Values 

The nodes from the input layer are connected to the hidden layer nodes and subsequently to the output 

layer nodes as shown in Figure 1. Node values are multiplied by the specific connection weights added to 

Input

Layer

Hidden

Layer

Output

Layer



 

18 

calculate a total sum of weights that will be transferred to the next node. A bias is also added as an additional 

set of weights and carried in the calculation. The sum of weights along with a bias is used to adjust the 

output of the hidden node, which will be the new feedforwarded value for the next node (Sultana 2021). 

Sultana exemplified the calculation of an arbitrary node “A” at a hidden layer; the node value is the sum of 

the value of the weights from the input layer. Equation 1 expresses the input value for a node “A” (Tennant 

Duckworth 2020; Yasarer 2010):   

𝑁𝑜𝑑𝑒𝐴 = ∑ [(𝐼𝑛𝑝𝑢𝑡 𝑁𝑜𝑑𝑒 𝑣𝑎𝑙𝑢𝑒)𝑖 × (𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 𝑤𝑒𝑖𝑔ℎ𝑡)𝑖]𝑛
𝑖=1 + 𝑏𝑖𝑎𝑠                                  𝐸𝑞. 1  

Activation Function: Sigmoidal Function 

Many activation functions can be used to introduce non-linearity in artificial neural networks. The use 

of non-linear functions allows the model to learn complex relationships from the database and turn the 

model into a universal approximator. Bipolar sigmoidal, logistic sigmoidal, and binary steps are an example 

of some available functions. Specific applications might require the use of specific functions with different 

ranges and properties. However, the activation function must be continuous, differentiable, and 

monotonically non-decreasing to be applied in the backpropagation neural network (Al-masaeid 2019; 

Sultana 2021). 

The feed forwarded information at the nodes in the hidden layer(s) and output layer need to pass through 

the activation function to introduce the nonlinearity into the network. Nonlinear transformations that occur 

in all nodes of the hidden and output layer(s) can be simplified using Equation 2 for an arbitrary node “A” 

(Al-masaeid 2019; Sultana 2021; Yasarer 2010): 

𝑂𝑢𝑡𝐴 = 𝑓(𝑁𝑒𝑡𝑗
𝐿)𝐴                                                                                                                                      𝐸𝑞. 2  

Where: 

• f: activation function 

• (input)A: input for node A, computed using Equation 3.  

A sigmoidal function was used as the activation function in this project. The sigmoidal function is 

especially advantageous for use in backpropagation networks because the simple relationship between the 

value of the function at a point and the value of the derivative at that point reduce the computational load 

during the training phase (Fausett 2005). An output value with a specific interval between 0 and 1 is 

expected for this function (Yasarer 2010). Figure 2 shows the graphical representation of the sigmoidal 

activation function that can be mathematically expressed using Equation 3.  

 

Figure 2. Sigmoidal Function 
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             𝑦(𝑥) =
 1

1 + 𝑒−𝑥
                                                                                                                                          𝐸𝑞. 3 

Weight Adjustment 

The predicted values resulting from the output node are compared to the actual (targeted) value and the 

error calculated from this comparison is used to adjust the connection weights. Different propagating error 

methods can be used to adjust the connection weights. The most common are Levenberg-Marquardt, 

Perceptron’s, and Gradient Descent (Qatu 2019; Sultana 2021). In this study, the gradient descent method 

was used due to its simplicity, stability, and effectiveness. The gradient descent method propagates the error 

from the output layer to the preceding layers using the derivatives of the activation function (Sultana 2021; 

Tennant Duckworth 2020). The weight’s incremental adjustments can be calculated using Equation 4 

(Yasarer 2010).  

∆𝑤𝑗𝑖
𝐿 = 𝑤𝑗𝑖

𝐿(𝑛𝑒𝑤)
− 𝑤𝑗𝑖

𝐿(𝑜𝑙𝑑)
                                                                                                                         𝐸𝑞. 4  

Where: 

• New: current iteration 

• Old: previous iteration 

Gasteiger and Zupan used the Delta rule to calculate the backpropagation neural network algorithm’s 

incremental change (Equation 5). 

∆𝑤𝑗𝑖
𝐿 = 𝑛𝛿𝑗

𝐿𝑂𝑢𝑡𝑖
𝐿−1                                                                                                                                      𝐸𝑞. 5  

Where (Gasteiger and Zupan 1993):  

• n: learning rate 

• 𝛿: represents the weighted error of the connection ji 

• 𝑂𝑢𝑡𝑖
𝐿−1: outcome from the ith neuron in the (L-1)th layer 

Learning Process 

The learning process can be summarized in six steps (Yasarer 2010): 

1. Input vectors are identified as X1, X2, X3, …, Xn, where n indicates the total number of 

variables 

2. Propagate the input vectors, X1, X2, X3, …, Xn via the connection weights to generate the 

output vectors. 

3. Itemize the initial weights and update the connection weights on the output layer. 

4. Update all weights in the hidden layer(s). 

5. Repeat steps 1 through 4 for each training dataset. 

6. Repeat steps 1 through 5 until the predicted output meets the corresponding target output 

within a predetermined tolerance or the training iterations reach the maximum limit.  

Number of Hidden Nodes 

The user is responsible to specify the number of initial and maximum hidden nodes in the ANN model 

development. The ANN process begins with the user-specified initial hidden node and goes up to the 

maximum allowed number predetermined. At the end of this process, the ANN structures with the least 

number of hidden nodes and the best statistical accuracy errors are selected to be re-evaluated in terms of 
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statistical accuracy measures as well as graphical accuracy measures. Equation 6 can be used to calculate 

the maximum number of hidden nodes (Yasarer 2010). 

𝑀𝑎𝑥. 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐻𝑖𝑑𝑑𝑒𝑛 𝑁𝑜𝑑𝑒𝑠 ≤
(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠) − (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠)

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠) + (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠) + 1
      

                                                                                                                                                                                          𝐸𝑞. 6  

Yasarer pointed out that choosing too many hidden nodes may lead to an overtraining situation. On the 

other hand, a few numbers of hidden nodes may not be sufficient to capture the behavior of complex 

phenomena. To utilize the generalization capability of the neural network approach, this study uses 

networks with one hidden layer (Yasarer 2010).  

Model Selection Criteria 

Three statistical accuracy measures were used to compare the performance of the developed networks 

and to select the best performing network. The three measures are the Average Square Error (ASE), the 

Mean Absolute Relative Error (MARE), and the Coefficient of Determination (R²). During the evaluation 

process, the training, testing, validation, and overall performance statistics need to be considered. The best-

performing model is chosen based on the lowest ASE, lowest MARE, and highest R², which indicates the 

level of agreement between predicted and actual output values. Equation 7 shows the ASE calculation 

(Yasarer et al. 2020a).  

𝐴𝑆𝐸 =  
∑ ∑ (𝑌𝑖𝑗

𝑃−𝑌𝑖𝑗
𝑜)

2
𝑛
𝑗=1

𝑁
𝑖=1

𝑁.𝑛
                                                                                                                         𝐸𝑞. 7     

Equation 8 expresses the MARE calculation (Yasarer et al. 2020a). 

𝑀𝐴𝑅𝐸 =  

∑ ∑ |
𝑌𝑖𝑗

𝑃 −𝑌𝑖𝑗
𝑜

𝑌𝑖𝑗
𝑂 |𝑛

𝑗=1
𝑁
𝑖=1

𝑁.𝑛
                                                                                                                      𝐸𝑞. 8 

Where: 

• 𝑌𝑖𝑗
𝑃 = Predicted output 

• 𝑌𝑖𝑗
𝑂  = Actual output 

• N = Number of datasets 

• n = Number of outputs 

Normalization of the input values is performed to prevent the ANN models from being biased towards 

a specific input. Equations 9 and 10 show the data normalization formula for input variables, while 

Equations 11 and 12 show the output variables (Sultana 2021).  

𝑋𝑀𝑎𝑥−𝐴𝑁𝑁𝑋𝑀𝑖𝑛

𝐴𝑁𝑁𝑋𝑀𝑎𝑥−𝐴𝑁𝑁𝑋𝑀𝑖𝑛
= 0.8                                                                                                              Eq. 9 

𝑋𝑀𝑖𝑛−𝐴𝑁𝑁𝑋𝑀𝑖𝑛

𝐴𝑁𝑁𝑋𝑀𝑎𝑥−𝐴𝑁𝑁𝑋𝑀𝑖𝑛
= 0.2                                                                                                    Eq. 10  

𝑌𝑀𝑎𝑥−𝐴𝑁𝑁𝑌𝑀𝑖𝑛

𝐴𝑁𝑁𝑌𝑀𝑎𝑥−𝐴𝑁𝑁𝑌𝑀𝑖𝑛
= 0.9                                                                                                      Eq. 11 

𝑌𝑀𝑖𝑛−𝐴𝑁𝑁𝑌𝑀𝑖𝑛

𝐴𝑁𝑁𝑌𝑀𝑎𝑥−𝐴𝑁𝑁𝑌𝑀𝑖𝑛
= 0.1                                                                                                      Eq. 12 

Where: 
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• X = Value of each independent variable 

• Xmax = Maximum value of X independent variable 

• Xmin = Minimum value of X independent variable 

• Y = Value of dependent variable 

• Ymax = Maximum value of Y dependent variable  

• Ymin = Minimum value of Y dependent variable  

• ANNxmax = Maximum X value normalized with respect to the value on the right side of the 

equation 

• ANNxmin = Minimum X value normalized with respect to the value on the right side of the 

equation 

• ANNYmax = Maximum Y value normalized with respect to the value on the right side of the 

equation 

• ANNYmin = Minimum Y value normalized with respect to the value on the right side of the 

equation 

Summary of ANN Model Development Stages  

The ANN model development and the desired criteria to choose the optimal network structures can be 

described in four successive stages (Yasarer and Najjar 2011), as follows: 

• Stage 1: Determine the ANN architecture. Decide input and output categories based on problem 

characteristics and ANN knowledge. Classify the datasets as training, testing, and validation 

sets. 

• Stage 2: Train and test the network on the experimental data to obtain the optimum number of 

hidden nodes and iterations for the ANN architecture defined in the previous stage. Determine 

the best-performing networks based on the lowest ASE, lowest MARE, and highest R² values. 

• Stage 3: Validate the best-performing network from the second stage using the validation 

database. Check if the accuracy results from the training, testing, and validation database are 

comparable. If they are, then stage four may be not necessary. 

• Stage 4: Retrain the best-performing network from Stage 2 using all experimental data to 

increase prediction accuracy and account for all patterns in the database. 

Typically, retraining the selected final network with all experimental data is expected to provide reliable 

predictions and overall better accuracy measures since all the knowledge in the database is incorporated 

into the final network (Yasarer and Najjar 2011). Research studies by Najjar and co-workers (Najjar and 

Basheer 1996; Najjar and Huang 2007; Yasarer and Najjar 2011, 2014a; b) recommend that stage four is 

necessary to arrive at a better-performing network model. In this study, the TR-SEQ1 computer program 

(Najjar 1999) was used to develop the ANN models. 

Dynamic-Sequential ANN Modeling 

A dynamic-sequential ANN modeling technique was also used in this study to develop pavement 

performance models. The dynamic ANN-based training technique adopted by Najjar (Najjar 1999) and 

Yasarer (Yasarer 2013) is used to model the time-dependent pavement roughness performance. The 

dynamic-sequential technique uses the framework of the conventional feed-forward error-backpropagation 

neural network approach (Najjar and Felker 2006; Yasarer 2013). According to the feedback approach, the 

futuristic (i.e., year (n+1)) roughness value (i.e., (IRI)n+1) is determined from some predetermined input 

parameters. This logic is mathematically represented by Equation 13 (Najjar and Felker 2006). 
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{(𝐼𝑅𝐼)𝑛+1} =  𝐴𝑁𝑁(𝑚+1)−𝑘−1{𝑥1, 𝑥2, … , 𝑥𝑚(𝐼𝑅𝐼)𝑛}                                                                    𝐸𝑞. 13 

Where ANN denotes the neural network model that best relates a given number of inputs (m+1) [i.e., 

x1, x2, ..., xm, (IRI)n] to the desired output [i.e., (IRI)n+1]. Note that {x1, x2, ..., xm} is a vector of (m) 

parameters used to represent all static input parameters that might affect the desired output. The (m+1)-k-

1 notation represents the architecture of the selected network. In this case, (m+1) represents the (m) static 

inputs, and the one additional feedback parameter, k is the optimal number of hidden nodes, which needs 

to be determined through the training and testing processes, and (1) is the desired number of outputs, 

namely, the futuristic roughness IRI value [i.e., (IRI)n+1] (Najjar and Felker 2006). An important component 

of dynamic-sequential modeling is that the datasets must be in sequential order and equal time steps. For 

the dynamic procedure is assumed that each data is recorded at the same intervals (Tennant Duckworth 

2020). Figure 3 shows an example of dynamic network architecture with one output. 

 

Figure 3. Dynamic-Sequential Network Structure (Yasarer 2013) 

Overview of Pavement Performance Indicators  
Among the most important measures of pavement performance, roughness is an indicator of road 

conditions and is used for making objective decisions related to the management of road networks (Sayers 

et al. 1986). Pavement roughness describes the irregularities in the pavement surfaces that affect the ride 

quality experienced by daily road users (Jaafar 2019). From several pavement condition indices used to 

assess pavement surface conditions, the PCR and IRI are the most used and well-recognized pavement 

performance indicators. 

The PCR is a rating method based on visual inspection of pavement distress. Although the relationship 

between pavement distress and performance is hard to be understood, there is evidence that the ability of 

pavement to sustain traffic loads safely and smoothly is adversely affected by the incidence of observable 
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distress. The PCR method provides a procedure for uniformly identifying and describing, in terms of 

severity and extent, pavement distress. The mathematical expression for PCR gives an index reflecting the 

composite effects of varying distress types, severity, and extent upon the overall condition of the pavement. 

The PCR calculation is based upon the summation of deducting points for each observable kind of distress. 

Deduct values are a function of distress type, severity, and extent (Ohio Department of Transportation 

2006). The weights of distresses, severity, and extent are multiplied to find the deduction for each distress 

type. Equation 14 shows the PCR mathematical expression (Tennant Duckworth 2020).  

𝑃𝐶𝑅 = 100 − ∑ 𝐷𝑒𝑑𝑢𝑐𝑡𝑖

𝑛

1

                                                                                                                  𝐸𝑞. 14 

Where: 

• PCR = Pavement Condition Rating 

• n = number of observable distresses 

• Deducti = multiplication of the weight of distress, weight of severity, and weight of extent for 

distress i. 

The Ohio Department of Transportation developed a PCR scale to describe the pavement condition 

using the PCR numbers calculated from Equation 14. This scale has a range from 0 to 100; a perfect 

pavement with no observable distress has a PCR of 100 and pavement with all distress present at their 

“High” levels of severity and “Extensive” levels of extent have a PCR of 0. Figure 4 illustrates the PCR 

Scale and the explanatory condition of a pavement associated with the various ranges of the PCR values. 

 

Figure 4. Pavement Condition Rating (PCR) Scale (Ohio Department of Transportation 2006) 



 

24 

Several methods were created to measure pavement roughness which turned difficult the use of 

roughness data since they were obtained by different methods. For this reason, there was a need to establish 

a standard roughness index to eliminate possible problems caused by using different roughness indices, 

methods, and data collection (Sayers et al. 1986). In 1982, the World Bank and the government of Brazil 

proposed the International Road Roughness Experiment (IRRE) to find a standard roughness index 

appropriate for the many types of roughness to provide a basis for comparing roughness measures obtained 

by different procedures. Forty-nine road test sites were measured using different test equipment and 

measurement conditions. A full roughness range of asphaltic concrete, surface treatment, gravel, and earth 

roads was included in the study. The results from the IRRE showed that a standard roughness index was 

practical, and an index was proposed that is measurable by most of the equipment, including road meters 

and profilometers. This selected measure has been denoted as IRI. The IRI is based on the quarter-car 

analysis method, a mathematical model of a vehicle that represents a body and a single wheel (Sayers 1989), 

with standardized parameter values and a reference simulation speed of 80 km/h (Sayers et al. 1986). 

The IRI measurement can be expressed in two types of units, in/mile or m/km. A higher IRI value 

indicates a rough pavement profile, which affects the ride quality experienced by road users. A lower IRI 

value indicates a smooth pavement profile, causing a better ride quality for road users. Using high-speed 

vans equipped with laser equipment, accelerometers, and a computer, the pavement profile is measured 

generating the IRI values. The surface profiles are measured at traffic speed and the onboard accelerometer 

provides the data to calculate the changes in the vertical position. The distance between the vehicle and the 

surface of the road is measured by laser and the collected data is stored in the computer periodically. Since 

the change in longitudinal pavement profile over time is directly related to the change in roughness with 

time, it becomes an important indicator of pavement performance. The MEPDG (AASHTO 2008) designed 

to update the 1993 AASHTO (AASHTO 1993) uses the IRI measurements of longitudinal roughness to 

indicate pavement smoothness. The IRI measurements are stable, easy to be reproduced from longitudinal 

profile elevation, highly correlated with other roughness measuring devices, and provide good correlations 

with important user serviceability ratings, like present serviceability rating (Barros 2021).  

Pavement Performance Models  
The role of pavement performance models in the road network system has pointed transportation 

agencies to advanced modeling techniques that are intelligent and efficient. Advanced modeling techniques 

using machine learning appear as a promising tool for predicting pavement deterioration, offering 

significant improvements over traditional techniques (Barros 2021). Several studies have been exploring 

the use of ANN for predicting pavement performance in asphalt, concrete, and composite pavements. The 

main difference between the performance model and the prediction model is that the performance model 

relies on the mechanistic response of a phenomenon rather than the statistical accuracy. In this sense, logical 

response is the main goal to achieve. Therefore, the sensitivity analysis plays an important role. This section 

reviews the pavement performance models utilizing machine learning for different pavement types. 

Flexible Pavement Performance Models  

Attoh-Okine (Attoh-Okine 1994) used a backpropagation neural network algorithm to develop an IRI 

prediction model for flexible pavements using data from the LTPP database and applied a sensitivity 

analysis to find the relative significance of the material and construction variables on the roughness. Asphalt 

content, asphalt layer thickness, cumulative equivalent single axle load, structural number (SN), and the 

percentage of fines passing through the No. 200 sieve were used as independent variables. The study 

concluded that the ANN technique was feasible when a large database on pavement conditions was 

available. This technique could form the basis for developing a generic intelligent pavement deterioration 
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process. However, it is also important to explore different preprocessing of input data, learning rules, and 

transfer functions to perform more successful predictions. 

Kargah-Ostadi et al. (Kargah-Ostadi et al. 2010) developed an ANN model for flexible pavements using 

a specific pavement study (SPS-5) from the LTPP database. The objective of the study was to predict and 

compare pavement roughness variation trends after various rehabilitation alternatives. The optimum ANN 

structure had eight input variables, five hidden nodes within one hidden layer, and one output. The ANN 

model performed successfully in predicting IRI trends following each kind of treatment in the SPS-5 

experiment.  

Hossain et al. (Hossain et al. 2019) developed an ANN prediction model for flexible pavements using 

climate and traffic data collected from the LTPP database. The study compared the ANN-predicted IRI and 

measured IRI for flexible pavements under specific climatic zones (wet freeze) with a two hidden-layered 

ANN structure with seven independent variables, nine hidden nodes for the first and second hidden layers, 

and one output (7-9-9-1), using a nonlinear transfer function. An RMSE of 0.027 was found for the flexible 

ANN model, indicating that the IRI prediction was reasonable for both short-term and long-term predictions 

using only climate and traffic data. 

Jaafar (Jaafar 2019) developed prediction models using ANN and MLR techniques for predicting IRI, 

rutting, and cracking for asphalt pavements using the LTPP database. For the IRI modeling, the ANN 

architecture used seven independent variables, five hidden nodes within a single hidden layer, and one 

output (i.e., 7-5-1 ANN structure). A coefficient of determination (R²) of 0.52 and 0.40 was found for the 

ANN and MLR models, respectively. The results show that both models were reasonably accurate for IRI 

prediction in asphalt pavements, but the ANN model outperformed the MLR with higher accuracy. Sollazzo 

et al. (Sollazzo et al. 2017) also developed an ANN model and compared with linear regression, obtaining 

better accuracy when using the ANN model compared to the MLR model. 

Choi (Choi et al. 2004) developed an ANN prediction model for flexible pavements on a granular base 

from three states: Texas, New Mexico, and Arizona. The results show that the ANN model could provide 

a reasonable explanation for their predictive behavior and model the relationship between input variables 

and pavement performance. 

Duckworth (Tennant Duckworth 2020) and Duckworth et al. (Duckworth et al. 2022) developed 

pavement performance prediction models using the ANNs approach for flexible pavements based on the 

MDOT database. A two-output model for predicting PCR and IRI was found to be the most promising. The 

ANN model successfully characterized the deterioration behavior with statistical measures in a suitable 

range. 

Yamany (Yamany et al. 2020) developed pavement performance models for flexible pavements using 

data from eight Midwestern states, and Zeiada (Zeiada et al. 2020), developed prediction models for warm 

climate regions in the LTPP database. Both studies found that by specifying these characteristics their 

prediction models performed better since the data gathered the same characteristics and helped the model 

to understand the variability of the datasets. 

Barros et al. (Barros et al. 2022c) developed ANN performance models for flexible pavements 

considering traffic and climate loads, pavement age, initial roughness condition, and M&R interventions 

using the LTPP database. The developed models efficiently characterized the deterioration behavior of 

asphalt pavements over time and effectively captured the effect of M&R interventions. The predicted IRI 

values were in good agreement with observed values and the developed models (R²=0.61 and R²=0.67 for 

Model 1 and Model 2, respectively). Barros highlights that even though the development of the ANN model 
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requires a good understanding of the roughness phenomena, the developed models are simple, fast, and do 

not require the user to have any prior knowledge of IRI or ANN. 

Rigid Pavement Performance Prediction Models (JCP and CRCP) 

Compared to flexible pavements, relatively few studies have been conducted in recent years to predict 

concrete pavements’ roughness. Hossain et al. (Hossain et al. 2020) developed a prediction model for IRI 

for rigid pavement using climate and traffic data by employing Artificial Neural Network (ANN) modeling. 

The climate and traffic data are collected from the LTPP database. The ANN model is trained using 70% 

of climate, traffic, and IRI data, 15% data is used to test the model, and the rest 15% data is employed to 

validate the model. The trained model and the validated model are compared by calculating the Root Mean 

Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) of ANN-predicted IRI and measured 

IRI. The study developed a model for rigid pavement located at the wet no-freeze climatic zone, employing 

7-9-9-1 ANN structure and using hyperbolic tangent sigmoidal transfer function, the RMSE value and 

MAPE value generated is 0.01 and 0.01 (1% error) respectively. 

Andrews et al. (Yasarer et al. 2021) developed a new set of ANN models that contain daily traffic 

volume, IRI, soil condition, pavement thickness, and mean roughness index (MRI) for the Jointed Concrete 

Pavements (JCP) in Mississippi. The best-performing ANN model had an R² of 0.93 and was integrated 

into a Microsoft Excel spreadsheet to generate an application that is simple, user- friendly, and allows the 

user to visualize the future projections of the pavement section. The authors recommended that MDOT 

personnel can employ this application to predict the condition of the JCP and prioritize the maintenance 

and rehabilitation schedule.  

Yasarer et al. (Yasarer et al. 2020b) developed a performance model for CRCP pavement using the ANN 

modeling technique for Mississippi. This study used maintenance and rehabilitation actions as an input in 

the model. The database used in this study contained 69 CRCP pavement sections that resulted in 212 

datasets from 2010 to 2018. The ANN model was trained using 25% data, then tested with 25% data, and 

the other 25% of data was employed to validate the model by comparing ANN-predicted IRI and measured 

IRI. The study developed a model employing an 11-18-1 ANN structure with an accuracy of 0.0012 ASE, 

5.923 MARE, and 0.872 R2 statistical measures.  

Sultana (Sultana 2021) developed performance models for Jointed Plain Concrete Pavement (JPCP), 

Jointed Reinforced Concrete Pavement (JRCP), and Continuously Reinforced Concrete Pavement (CRCP) 

using MLR and ANN techniques considering the effects of M&R history in the model development. The 

input and output variables were similar for all the models and retrieved from the LTPP database. The ANN 

models showed better accuracy in predicting pavement performance compared to the multiple regression 

models for all types of concrete pavements. A high R² of 0.94, 0.95, and 0.95 were obtained for the JPCP, 

JRCP, and CRCP, respectively, presenting a significant improvement over models that currently use 

mechanistic-empirical pavement design.   

Sultana et al. (Sultana et al. 2022a) developed an ANN pavement deterioration model for jointed plain 

concrete pavement (JPCP). The models were developed using LTPP data for the wet, freeze climatic region. 

The input variables were initial pavement condition (i. e., initial IRI), pavement structural and mechanical 

properties (i.e., age, concrete pavement thickness, base/subbase thickness, average contraction spacing, 

base/subbase materials type), traffic (Cumulative ESAL (CESAL)), and climate attributes (i.e., average 

annual air temperature, total annual precipitation, annual freezing index, annual freeze-thaw), and IRI as 

the output variable. The developed ANN model had an R² of  0.92, an ASE, and a MARE value of 0.00103 

and 9.93, respectively. The total data points used to develop the ANN model were 636 and the final model 

structure was 13-19-1, where 13 is the number of input variables, 19 hidden nodes, and 1 output variable. 
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The best model was used to simulate extreme climate conditions by developing a Graphical User Interface 

(GUI). IRI values gradually increased, and pavement conditions deteriorated over time when climate 

conditions change to the extreme. The study addressed a few gaps in the literature including the scarcity of 

studies on long-term IRI prediction using LTPP data and studies on the effect of climate attributes in 

pavement deterioration. 

Sultana et al. (Sultana et al. 2022b) exhibited a methodology to determine pavement performance 

incorporating maintenance and rehabilitation history using the LTPP database and ANN modeling 

approach. The study incopored the M&R history as construction number (CN) in the LTPP database and 

the hypothesis testing demonstrated M&R treatment has a significant effect on pavement performance. 

Several ANN models were attempted to evaluate the best way to include M&R history and resulted in more 

realistic prediction of pavement condition A continuous CN approach resulted in an R² of 0.901 compared 

to the categorical CN approach of R² of 0.878. 

Sultana et al. (Sultana et al. 2021a, 2022c) utilized Construction Number (CN) variable for developing 

IRI prediction models for Jointed Plain Concrete Pavements (JPCP). Three ANN models were developed 

using variables such as initial IRI, pavement age, concrete pavement thickness, ESAL, climatic region, and 

CN. The best model had an R² of 0.87 and successfully estimated the increase of IRI values with time and 

decrease of IRI value after maintenance and rehabilitation. 

Sultana et al. (Sultana et al. 2021b) studied climate attributes such as precipitation, extreme temperature, 

and freeze-thaw cycles along with traffic loads that cause pavement distresses. Sultana developed IRI 

models that successfully estimated the IRI values for Jointed Plain Concrete Pavement (JPCP) considering 

the M&R history of the pavements using the ANN approach. The variables used for the ANN model 

development are initial IRI, pavement age, concrete pavement thickness, equivalent single axle load 

(ESAL), climatic region (wet-freeze, wet non-freeze, dry-freeze, dry non-freeze), CN, and several 

climatological data. The best performing ANN model resulted in promising statistical measures (i.e. R²= 

0.87).  

Abd El-Hakim and El-Badawy (Abd El-Hakim and El-Badawy 2013) developed an ANN model to 

predict IRI values for Jointed Plain Concrete Pavement (JPCP) sections using the LTPP database. The 

model inputs were initial IRI value, pavement age, transverse cracking, percent joints spalled, flexible and 

rigid patching areas, total joint faulting, freezing index, and percent subgrade passing No. 200 U.S. sieve. 

The data included a total of 184 IRI measurements and the results show that the ANN model yielded a 

higher prediction accuracy (R² of 0.83, and ratio of standard error of estimate (predicted) to standard 

deviation of the measured IRI values: Se/Sy =0.414) compared to the MEPDG model (R² of 0.584, Se/Sy 

=0.643). In addition, the bias in the predicted IRI values using the ANN model was significantly lower 

compared to the MEPDG regression model. 

Composite Pavement Performance Prediction Models 

Literature review to date shows that ANN models performed successfully in predicting IRI values for 

asphalt and concrete pavements. However, performance prediction models for composite pavements have 

not been well investigated. A few studies are available using composite pavements data and fewer studies 

utilized M&R history in the model development. These studies are summarized in this section. 

Kaya et al. (Kaya et al. 2020) developed pavement performance models for flexible and composite 

(asphalt concrete over the jointed plain concrete pavement) pavement systems in Iowa. ANN-based models 

were found to be good tools for modeling pavement deterioration when there were many pavement sections 

with various traffic, thickness, and other various deterioration trends. 
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Abdelaziz et al. (Abdelaziz et al. 2020) develop an IRI prediction model for both original and overlaid 

flexible pavements using general pavement studies (GPS-1, GPS-2, and GPS-6) and the specific pavement 

studies (SPS-1, SPS-3, and SPS-5) of the LTPP database. Multiple linear regression (MLR) and ANN 

techniques predict IRI as a function of pavement age, initial IRI, transverse cracks, alligator cracks, and 

standard deviation of the rut depth. The ANN model resulted in better results compared to the regression 

model, R² = 0.75 and R² = 0.57, respectively. The network consisted of five inputs, three hidden layers with 

ten nodes each, and one output, 5-10-10-10-1 with a Logarithmic-Sigmoidal (LOGSIG) as the transfer 

function. 

Barros et al. (Barros et al. 2021a; b) developed pavement roughness models for composite pavements 

using the LTPP database and the feed-forward ANN approach. A total of 592 data points from 52 pavement 

sections were analyzed. Five models were developed and the best performing model had an ASE of 0.002, 

a MARE of 12.936, and an R² of 0.88. It utilized 14 input variables (i.e. Initial IRIMean, Age, Wet-Freeze, 

Wet Non-Freeze, Dry-Freeze, Dry Non-Freeze, Asphalt Thickness, Concrete Thickness, CN Code, ESAL, 

Annual Air Temperature, Freeze Index, Freeze-Thaw, and Precipitation) and one output variable 

(IRIMean).  

Barros et al. (Barros et al. 2022b) analyzed roughness data for composite pavements (asphalt overlay on 

concrete) in the wet non-freeze climate zone of the Long-Term Performance Pavement (LTPP) database 

and developed pavement roughness prediction models using ANN and Multiple Linear Regression (MLR) 

approaches to evaluate the accuracy of developed models and identify the best performance model. A total 

of 49 sections with 353 data points were used for the analysis. The ANN and MLR models included 11 

input variables and 1 output variable. The results indicated the ANN model outperformed the MLR model 

with a MARE (13.14) 53% lower and an ASE (0.00182) 99% lower, compared to the MLR model. The R² 

value improved from 0.37, obtained by the MLR model, to 0.86, obtained by the ANN model. This 

translates into 132% better prediction accuracy by using the ANN-based model. The use of a specific 

climate region helped the model to capture almost 90% of the variability, which may be not viable when 

using data from all climate zones together. Furthermore, the developed models did not use any distress data 

for input variables, which can help transportation agencies save time and money from data collection and 

processing. 

Barros et al. (Barros et al. 2022e) developed three ANN models using different M&R variables to 

identify which approach would give the most accurate roughness prediction. Results show that Model 1 

outperformed all other models with an ASE of 0.0011, a MARE of 10.45, and a high R² of 0.90. The 

network structure of the best model includes 9 input variables, 1 hidden layer with 19 hidden nodes, 20,000 

iterations, and 1 output.  

The literature review indicates that the M&R history was not considered in many pavement performance 

prediction models. Therefore, this research considers several input variables, including M&R history for 

developing performance models for flexible, concrete, and composite pavements in Mississippi. The 

performance models will predict IRI and PCR values using easily available variables that will help MDOT 

to prepare M&R programs and budgets without estimating distress in future years. 
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Methodology 

The pavement performance modeling methodology flowchart used in this research is shown in 

Figure 5. 

 

Figure 5. Pavement Performance Modeling Methodology 

The model development methodology is described, as follows: 

• Conduct an extensive literature review to identify key input and output variables.  

• Compile databases for flexible, rigid (JCP and CRCP), and composite pavements from the 

MDOT database, including variables that affect pavement performance.  

• Assess the quality of databases and identify missing/erroneous data items.  

• Develop pavement performance models for all pavement types using the ANN modeling 

technique.  

• Evaluate the accuracy of the developed performance prediction models.  

• Select the best-performing model based on statistical measures and verify the prediction 

behavior.  

• Implement the selected performance models via Graphical User Interface (GUI).  

• Evaluate the selected model using GUI for the enhancement of pavement asset management.  

Data Description and Collection 
The pavement database utilized in this research is a part of Mississippi’s pavement survey performed 

by the MDOT. Every two years, MDOT collects data to monitor the current pavement conditions and 

Sensitivity 

Analysis 
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predict M&R for the Mississippi road network. Four different pavement types are found in the database: 

flexible, JCP, CRCP, and composite pavements. All pavement types were utilized in this study to develop 

performance prediction models. MDOT operates a pavement management system that includes PCR, IRI, 

and distress data (Barros et al. 2022d). Due to the new methods in the data collection system, only recorded 

datasets from 2010 to 2020 were utilized, which resulted in 6 usable years of data. To characterize the 

behavior of pavement deterioration in a one-year time increment, a continuous database was needed to be 

used for developing reliable models. Since MDOT collects data every even year, to develop prediction 

models that are applicable for a 1-year increment, the odd-year data were generated by averaging 

consecutive years from 2010 to 2020. This approach was successfully utilized for the MDOT database in 

previous studies (Barros et al. 2022a; d; Duckworth et al. 2022; Tennant Duckworth 2020; Yasarer et al. 

2020b, 2021). 

By assessing the quality of databases, sections with missing or illogical data have been excluded as the 

ANN model development process needs a complete dataset. This includes instances of negative IRI and the 

sections without the recorded length. After the data processing procedure, the flexible pavement database 

consisted of 35,712 data points for 3,968 sections. The JCP database comprised 909 data points for 101 

sections while the CRCP database had 396 data points for 44 sections. The composite pavement database 

consisted of 10,305 data points for 1,145 sections. The data processing procedure utilized in this research 

is explained in the following sections. 

Data Processing 
The database for the development of performance prediction models is obtained after cleansing and 

reorganizing the raw data files. The purpose of developing an ANN pavement performance model is to 

predict when M&R actions are needed and how it affect the roadway. It is known that not all rehabilitation 

actions were properly recorded in the MDOT’s pavement survey and for this reason, a different approach 

for assigning rehabilitation actions was proposed based on the discussions with the state agency. 

Rehabilitation Actions 

When data processing the database, numerous pavement sections were noticed to have vast 

improvements in terms of PCR and/or IRI without any recorded rehabilitations. Improvement of PCR and 

IRI values without any recorded rehabilitation was found to be irrational. Some uncertainty due to the 

calibration of the profilometer, systematic errors, and the environmental conditions on the day of the survey 

may have resulted in some of the irrational condition measures (Yasarer et al. 2020b). To incorporate the 

effect of the rehabilitation on PCR and IRI a new approach to classify rehabilitation actions was needed. 

Two separate artificial rehabilitation actions based on significant changes in PCR and IRI have been 

assigned to the database. Threshold values for PCR and IRI were assigned based on the evaluation of data 

history, consultation with experts in pavements, transportation, and ANN, and verified by MDOT. Several 

threshold values were studied (Duckworth et al. 2022; Tennant Duckworth 2020; Yasarer et al. 2020b; 

Yasarer and Andrews 2021) and optimum threshold values were found. 

A preliminary study was performed and through the examination, a rehabilitation action was assigned 

to flexible sections when PCR values increased by more than 2.5 or IRI decreased by more than 0.2 mm/m 

(Duckworth et al. 2022), for JCP sections when PCR increased more than 2.5 and IRI decreased by 0.05 

mm/m(Yasarer et al. 2021), and for CRCP sections when PCR values increased by more than 2.5 or IRI 

decreased by more than 0.06 (Yasarer et al. 2020b). These artificial rehabilitations were known as PCR or 

IRI rehabilitation based on their changes. In the initial database, a rehabilitation action was assigned “1” if 

it occurred and assigned “0” if it did not occur. However, after further study, another approach was found 

to be more realistic and accurate. The new approach was based on PCR and IRI percentage changes. If PCR 
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increased 8% to 12% and IRI decreased 5% to 16% in a year compared to the previous measurement, a 

minor rehabilitation was assumed to take place in that year. If PCR increased above 12% and IRI decreased 

more than 16%, a major rehabilitation was assumed. If none of these situations occurred, it was assumed 

no rehabilitation (Barros et al. 2022d; a; Tennant Duckworth 2020). 

Input and Output Variables 

For the pavement performance prediction modeling, several input variables were selected after an 

extensive literature review and consultation with MDOT personnel to identify what parameters were 

significant to the agency and retrieved from the MDOT database. Different inputs were tried using a trial-

and-error method to select the most significant variables considering the practical point of view and 

these variables are described in the following sections.  

Output Variables 

Among the most important measures of pavement performance, the IRI and PCR are the most used and 

well-recognized pavement performance indicators (Barros et al. 2022d). These indicators are considered 

the most significant in determining the condition of the pavement and, therefore, were utilized in this 

research. It is known that PCR and IRI usually change inversely over time, when PCR increases, IRI 

decreases. However, to achieve better results in the modeling process both output variables must be directly 

proportional. Therefore, a new variable named complementary PCR (i.e., 100-PCR) was developed. The 

complementary PCR is calculated by subtracting 100 – PCR, which resulted in a directly proportional 

relationship with the IRI variable. The utilization of complementary PCR and IRI helped the network to 

optimize the model with higher accuracy and to establish a better correlation between actual and predicted 

outputs (Yasarer et al. 2020b). The output variables utilized in this research are described, as follows: 

• IRI: International Roughness Index measured in that specific year in mm/m or m/km.  

• PCR: Pavement Condition Rating calculated in that specific year 

• Complementary PCR: this variable is calculated by subtracting PCR from 100 (i.e., 100-PCR).  

Input Variables 

For the pavement modeling database, several input variables were tried using a trial-and-error method 

to select the most significant variables considering the practical point of view and identifying the optimum 

modeling structure. The input variables utilized in this research for flexible, rigid (JCP and CRCP), and 

composite pavements, are explained as follows:  

• Beginning Latitude: latitude coordinates to indicate the initial location of the roadway section 

• Beginning Longitude: longitude coordinates to indicate the initial location of the roadway 

section 

• Ending Latitude: latitude coordinates to indicate the end of the roadway section 

• Ending Longitude: longitude coordinates to indicate the end of the roadway section 

• Structural Number (SN): number used to indicate the strength of the roadway when factoring 

material properties, thickness, and drainage in each layer of flexible pavement. This variable is 

only used in the flexible pavement database.  

• Pavement Top Layer Thickness: indicates the asphalt overlay concrete thickness in the 

pavement section in millimeters. This variable is only used in the composite pavement database.  

• Concrete Pavement Thickness: indicates the concrete thickness in the pavement section in 

millimeters. This variable is only used in the rigid (JCP and CRCP) pavement database. 

• Section Length: length of the section recorded in miles 
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• Pavement Age in 2010: shows the pavement section’s age since the earliest available pavement 

measurement was recorded.  

• PCR in 2010: shows the initial PCR value in 2010 to indicate the base starting value.  

• IRI in 2010: shows the initial IRI in 2010 to indicate the baseline value to represent the 

pavement's initial condition.  

• Time since 2010: represents the time since 2010 to the desired prediction year. This value is 

associated with the effects of pavement aging.  

• Drainage: categorical variable that indicates the presence of drainage components in the section. 

A value of “0” indicates no drainage while a value of “1” indicates the existence of drainage. 

• Accumulated Rainfall (mm): accumulated annual rainfall to determine how much rainfall 

affects a roadway section throughout the modeling years. This was accomplished for each year 

by summing current and previous years’ rainfall data. 

• IRI Rehabilitation: categorical variable to represent rehabilitation actions based on IRI changes 

• PCR Rehabilitation: categorical variable to represent rehabilitation actions based on PCR 

changes 

• PCR and IRI Minor Rehabilitation: categorical variable to represent minor rehabilitation. Use 

“1” if PCR increased 8% to 12% and IRI decreased 5% to 16% in a year compared to the 

previous measurement. If not, use “0”. 

• PCR and IRI Major Rehabilitation: categorical variable to represent major rehabilitation. Use 

“1” if PCR increased above 12% and IRI decreased more than 16%. If not, use “0”. 

• Equivalent Single Axle Load (ESAL): traffic variable to indicate the ESAL value in that specific 

year.  

• Cumulative Equivalent Single Axle Load (CESAL): traffic variable to indicate the CESAL in 

that specific year.  

• Two Lane Road: categorical variable to indicate the type of road for a specific section. Use “1” 

if this section has a two-lane road. If not, use “0”. 

• Four Lane Road: categorical variable to indicate the type of road for a specific section. Use “1” 

if this section has a four-lane road. If not, use “0”. 

• Interstate: categorical variable to indicate the type of road for a specific section. Use “1” if this 

section is an interstate. If not, use “0”. 

• PRE PCR: variable used for dynamic ANN models to indicate the PCR from the previous years 

that will be used to predict the actual year. 

• PRE IRI: variable used for dynamic ANN models to indicate the IRI from the previous years 

that will be used to predict the actual year.   
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Summary of Input and Output Variables 

A summary of all input and output variables utilized in the pavement performance modeling study is 

shown in Table 1. 

Table 1. Summary of Input and Output Variables for All Pavement Types 

Pavement Type Flexible Rigid (JCP and CRCP) Composite 

Input Variables 

Begin Latitude Begin Latitude Begin Latitude 

Begin Longitude Begin Longitude Begin Longitude 

End Latitude End Latitude End Latitude 

End Longitude End Longitude End Longitude 

Structural Number (SN) Section Length Section Length 

Section Length Pavement Age in 2010 Pavement Age in 2010 

Pavement Age in 2010 Concrete Thickness 
Pavement Top Layer 

Thickness 

PCR @ 2010 PCR @ 2010 PCR @ 2010 

IRI @ 2010 IRI @ 2010 IRI @ 2010 

Time (t) Time (t) Time (t) 

Drainage Drainage Drainage 

Accumulated Rainfall (mm) 
Accumulated Rainfall 

(mm) 

Accumulated Rainfall 

(mm) 

IRI Rehabilitation IRI Rehabilitation IRI Rehabilitation 

PCR Rehabilitation PCR Rehabilitation PCR Rehabilitation 

PCR and IRI Minor Rehabilitation 
PCR and IRI Minor 

Rehabilitation 

PCR and IRI Minor 

Rehabilitation 

PCR and IRI Major Rehabilitation 
PCR and IRI Major 

Rehabilitation 

PCR and IRI Major 

Rehabilitation 

ESAL ESAL ESAL 

CESAL CESAL CESAL 

Two Lane Road Two Lane Road Two Lane Road 

Four Lane Road Four Lane Road Four Lane Road 

Interstate Interstate Interstate 

Pre PCR Pre PCR Pre PCR 

Pre IRI Pre IRI Pre IRI 

Output 

Variables 

PCR PCR PCR 

IRI IRI IRI 

Complementary PCR Complementary PCR Complementary PCR 

IRI and Complementary PCR 
IRI and Complementary 

PCR 

IRI and Complementary 

PCR 
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Development of Performance Models  

ANN Model Development 
The ANN pavement performance models were developed in four stages, as explained in the “Summary 

of ANN Model Development Stages” section. Stage one comprises the selection of input and output 

variables and the classification of the datasets in training (50%), testing (25%), and validation (25%). In 

stage two datasets are trained and tested to obtain the optimum number of hidden nodes and iterations to 

determine the best-performing networks. In stage three, the best networks from stage 2 are tested with the 

validation datasets. In the fourth stage, the best-performing network from stage 2 is retrained using all 

experimental data to increase prediction accuracy and account for all patterns in the database (Yasarer 

2013).  

A feedforward neural network with a back-propagation training algorithm was used for the development 

of performance prediction models in this study. A one-hidden-layer network was considered in the model 

development since the use of more than one hidden layer may cause the network to memorize the data in 

the training phase (Yasarer 2010). A sigmoidal function was used for data generalization purposes and the 

TR-SEQ1 computer program (Najjar 1999) was used to develop the ANN models. 

ANN Model Selection 
The best ANN models for each pavement type were selected based on the lowest Average Square 

Error (ASE), Mean Absolute Relative Error (MARE), and highest Coefficient of Determination (R²). 

The maximum and minimum values of each independent variable were included in the training phase 

for the network to represent the characteristics of the response. The maximum and minimum ranges of 

each input/output variable for ANN model development were chosen on purpose to be wider than their 

actual ranges for better mathematical mapping (Yasarer 2010).  

ANN Model Structure  
Different models were developed varying the numbers of independent and dependent variables 

using a trial-and-error method to select the most significant variables considering the practical point of 

view and identify the optimum modeling structure (Barros et al. 2022d). The developed models and 

variables used in this research for each pavement type are presented in the following sections  

Flexible Pavements 

A total of 7 models were developed in this study to select the most accurate and practical model for 

MDOT utilization. Models utilized 15 to 19 independent variables and one or two dependent variables in 

their structure.  Various trials with different independent variable combinations were carried out. As more 

survey data became available over the years, the models and trials were expanded to improve the prediction 

capability of the models. Some of the significant features of the trial runs are listed below.  

• 2020 Without ESAL 

• 2020 With ESAL 

• 2020 With ESAL Complementary PCR 

• 2020 With CESAL 

• 2020 With CESAL IRI <= 5 m/km 

• 2020 CESAL IRI <= 5 m/km With Lanes 
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• 2020 ESAL IRI <= 5 m/km With Lanes 

• 2022 CESAL IRI <=5m/km With Lanes 

 

 

 

A summary of all developed models for flexible pavements and their structure is presented in Table 2.  

Table 2. Flexible Pavement Models Structure 

Flexible 

Pavement 

2020 Without 

ESAL 

2020 

With ESAL 

IRI 

2020 With ESAL 

Complementary 

PCR 

2020 With 

CESAL 

2020 With 

CESAL 

IRI <= 5 m/km 

2020 CESAL 

IRI <= 5 m/km 

With Lanes 

2020/2022 ESAL 

IRI <= 5 m/km 

With Lanes 

Independent 

Variables 

Begin Latitude 
Begin 

Latitude 
Begin Latitude Begin Latitude Begin Latitude Begin Latitude Begin Latitude 

Begin 

Longitude 

Begin 

Longitude 
Begin Longitude Begin Longitude Begin Longitude Begin Longitude Begin Longitude 

End Latitude 
End 

Latitude 
End Latitude End Latitude End Latitude End Latitude End Latitude 

End Longitude 
End 

Longitude 
End Longitude End Longitude End Longitude End Longitude End Longitude 

SN SN SN SN SN SN SN 

Section Length 
Section 

Length 
Section Length Section Length Section Length Section Length Section Length 

Pavement Age 

in 2010 

Pavement 

Age in 2010 

Pavement Age in 

2010 

Pavement Age in 

2010 

Pavement Age in 

2010 

Pavement Age in 

2010 

Pavement Age in 

2010 

PCR @ 2010 
PCR @ 

2010 
PCR @ 2010 PCR @ 2010 PCR @ 2010 PCR @ 2010 PCR @ 2010 

IRI @ 2010 
IRI @ 

2010 
IRI @ 2010 IRI @ 2010 IRI @ 2010 IRI @ 2010 IRI @ 2010 

Time (t) Time (t) Time (t) Time (t) Time (t) Time (t) Time (t) 

Drainage Drainage Drainage Drainage Drainage Drainage Drainage 

PCR/IRI Minor 

Rehab. 

PCR/IRI 

Minor Rehab. 

PCR/IRI Minor 

Rehab. 

PCR/IRI Minor 

Rehab. 

PCR/IRI Minor 

Rehab. 

PCR/IRI Minor 

Rehab. 

PCR/IRI Minor 

Rehab. 

PCR/IRI Major 
Rehab. 

PCR/IRI 
Major Rehab. 

PCR/IRI Major 
Rehab. 

PCR/IRI Major 
Rehab. 

PCR/IRI Major 
Rehab. 

PCR/IRI Major 
Rehab. 

PCR/IRI Major 
Rehab. 

 ESAL  CESAL CESAL CESAL ESAL 
     Two Lane Road Two Lane Road 
     Four Lane Road Four Lane Road 
     Interstate Interstate 

Pre PCR  Pre PCR Pre PCR Pre PCR Pre PCR Pre PCR 

Pre IRI Pre IRI  Pre IRI Pre IRI Pre IRI Pre IRI 

Dependent 

Variables 

Complementary 

PCR 
 Complementary 

PCR 

Complementary 

PCR 

Complementary 

PCR 

Complementary 

PCR 

Complementary 

PCR 

IRI IRI  IRI IRI IRI IRI 

 

Rigid Pavements 

A total of six models were considered among many models for rigid pavements. Four models for JCP 

and four models for CRCP. Both JCP and CRCP models used 15 to 18 independent and 2 output variables 

in their structure.  
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Jointed Concrete Pavements (JCP) 

This section describes the model structure for JCP pavements. A summary of promising models for JCP 

pavements and their model structure is presented in Table 3. 

Table 3. JCP Pavement Models Structure 

JCP 

Pavement 
2020 ESAL 2020 CESAL 

2020 ESAL 

With Lanes 

2022 CESAL 

Independent 

Variables 

Begin Latitude Begin Latitude Begin Latitude Begin Latitude 

Begin Longitude Begin Longitude Begin Longitude Begin Longitude 

End Latitude End Latitude End Latitude End Latitude 

End Longitude End Longitude End Longitude End Longitude 

Concrete 

Thickness 

Concrete 

Thickness 

Concrete 

Thickness 

Concrete 

Thickness 

Section Length Section Length Section Length Section Length 

Pavement Age 

in 2010 

Pavement Age 

in 2010 

Pavement Age in 

2010 

Pavement Age in 

2010 

PCR @ 2010 PCR @ 2010 PCR @ 2010 PCR @ 2010 

IRI @ 2010 IRI @ 2010 IRI @ 2010 IRI @ 2010 

Time (t) Time (t) Time (t) Time (t) 

PCR/IRI Minor 

Rehab. 

PCR/IRI Minor 

Rehab. 

PCR/IRI Minor 

Rehab. 

PCR/IRI Minor 

Rehab. 

PCR/IRI Major 

Rehab. 

PCR/IRI Major 

Rehab. 

PCR/IRI Major 

Rehab. 

PCR/IRI Major 

Rehab. 

ESAL CESAL ESAL ESAL 
  Two Lane Road  
  Four Lane Road  
  Interstate  

Pre PCR Pre PCR Pre PCR Pre PCR 

Pre IRI Pre IRI Pre IRI Pre IRI 

Dependent 

Variables 

Complementary 

PCR 

Complementary 

PCR 

Complementary 

PCR 

Complementary 

PCR 

IRI IRI IRI IRI 
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Continuously Reinforced Concrete Pavement (CRCP) 

This section describes the model structure for CRCP pavements. A summary of promising models for 

CRCP pavements and their structure is presented in Table 4. The trials with different data configurations 

were presented in the table. Most of the variables are common except ESAL, cumulative ESAL, Lane 

category, and updated database with cumulative ESAL.  

 

Table 4. CRCP Models Structure 

CRCP 

Pavement 
2020 ESAL 2020 CESAL 

2020 ESAL With 

Lanes 
2022 CESAL 

Independent 

Variables 

Begin Latitude Begin Latitude Begin Latitude Begin Latitude 

Begin Longitude Begin Longitude Begin Longitude Begin Longitude 

End Latitude End Latitude End Latitude End Latitude 

End Longitude End Longitude End Longitude End Longitude 

Concrete Thickness Concrete Thickness Concrete Thickness Concrete Thickness 

Section Length Section Length Section Length Section Length 

Pavement Age in 2010 Pavement Age in 2010 Pavement Age in 2010 
Pavement Age in 

2010 

PCR @ 2010 PCR @ 2010 PCR @ 2010 PCR @ 2010 

IRI @ 2010 IRI @ 2010 IRI @ 2010 IRI @ 2010 

Time (t) Time (t) Time (t) Time (t) 

PCR/IRI Minor Rehab. PCR/IRI Minor Rehab. PCR/IRI Minor Rehab. 
PCR/IRI Minor 

Rehab. 

PCR/IRI Major Rehab. PCR/IRI Major Rehab. PCR/IRI Major Rehab. 
PCR/IRI Major 

Rehab. 

ESAL CESAL ESAL CESAL 
  Two Lane Road  

  Four Lane Road  
  Interstate  

Pre PCR Pre PCR Pre PCR Pre PCR 

Pre IRI Pre IRI Pre IRI Pre IRI 

Dependent 

Variables 

Complementary PCR Complementary PCR Complementary PCR 
Complementary 

PCR 

IRI IRI IRI IRI 
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Composite Pavements 

A total of 7 models were selected among many developed models in this study to select the most 

accurate and practical model for MDOT utilization. Models utilized 15 to 19 independent variables and 

two dependent variables in their structure. A summary of promising models for composite pavements and 

their structure is presented in Table 5. 

Table 5. Composite Pavement Models Structure 

Composite 

Pavement 

2020 Without 

ESAL 
2020 With ESAL 2020 With CESAL 

2020 With CESAL 

No Outliers 

2020 With ESAL No 

Outliers 

2020 ESAL with 

Lanes 

2022 With ESAL 

No Outliers 

Independent 

Variables 

Begin Latitude Begin Latitude Begin Latitude Begin Latitude Begin Latitude Begin Latitude Begin Latitude 

Begin Longitude Begin Longitude Begin Longitude Begin Longitude Begin Longitude Begin Longitude Begin Longitude 

End Latitude End Latitude End Latitude End Latitude End Latitude End Latitude End Latitude 

End Longitude End Longitude End Longitude End Longitude End Longitude End Longitude End Longitude 

Top Layer 
Thickness 

Top Layer 
Thickness 

Top Layer 
Thickness 

Top Layer 
Thickness 

Top Layer Thickness 
Top Layer 
Thickness 

Top Layer 
Thickness 

Section Length Section Length Section Length Section Length Section Length Section Length Section Length 

Pavement Age in 

2010 

Pavement Age in 

2010 

Pavement Age in 

2010 

Pavement Age in 

2010 

Pavement Age in 

2010 

Pavement Age in 

2010 

Pavement Age in 

2010 

PCR @ 2010 PCR @ 2010 PCR @ 2010 PCR @ 2010 PCR @ 2010 PCR @ 2010 PCR @ 2010 

IRI @ 2010 IRI @ 2010 IRI @ 2010 IRI @ 2010 IRI @ 2010 IRI @ 2010 IRI @ 2010 

Time (t) Time (t) Time (t) Time (t) Time (t) Time (t) Time (t) 

PCR/IRI Minor 

Rehab. 

PCR/IRI Minor 

Rehab. 

PCR/IRI Minor 

Rehab. 

PCR/IRI Minor 

Rehab. 

PCR/IRI Minor 

Rehab. 

PCR/IRI Minor 

Rehab. 

PCR/IRI Minor 

Rehab. 

PCR/IRI Major 

Rehab. 

PCR/IRI Major 

Rehab. 

PCR/IRI Major 

Rehab. 

PCR/IRI Major 

Rehab. 

PCR/IRI Major 

Rehab. 

PCR/IRI Major 

Rehab. 

PCR/IRI Major 

Rehab. 
 ESAL CESAL CESAL ESAL ESAL ESAL 
     Two Lane Road  
     Four Lane Road  
     Interstate  

Pre PCR Pre PCR Pre PCR Pre PCR Pre PCR Pre PCR Pre PCR 

Pre IRI Pre IRI Pre IRI Pre IRI Pre IRI Pre IRI Pre IRI 

Dependent 

Variables 

Complementary PCR 
Complementary 

PCR 

Complementary 

PCR 

Complementary 

PCR 
Complementary PCR 

Complementary 

PCR 

Complementary 

PCR 

IRI IRI IRI IRI IRI IRI IRI 
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Research Findings and Applications 

In this section, the results of the best-performing models for flexible and rigid pavements are presented. 

This research study explored thousands of model structures, input-output combinations, and different 

modeling strategies, such as static and dynamic machine learning modeling techniques,  to find out/explore 

the best way to model a very complicated phenomenon that contains so many levels of uncertainties and 

errors. It would be impossible to present all the trials in these documents. Accordingly, in this section, the 

final model that is used for the graphical user interface is presented to keep the documentation simple and 

easy to understand.   

 

Flexible Pavements 

A flexible pavement consists of a surface course made of bituminous material and underlying base and 

subbase courses. Typically, asphalt, known for its viscous properties allowing significant plastic 

deformation, is used as the bituminous material. While most asphalt surfaces are constructed on a gravel 

base, some "full depth" asphalt surfaces are directly laid on the subgrade. One notable advantage of flexible 

pavement is its initially low installation cost, making it a widespread choice globally. However, regular 

maintenance and repairs are essential every few years. Additionally, flexible pavement deteriorates 

relatively quickly, with the likelihood of cracks and potholes due to factors such as poor drainage and heavy 

vehicular traffic. For this reason, it is very important to predict the condition of a flexible pavement section 

and integrate the maintenance activity into the management system.  A total of 46,830 datasets were used 

for flexible model development. About 50% of the database is used for training and 50% were used for 

testing and validation purposes. After 4 four-stage model development process was followed, the statistical 

accuracy measures of the training, testing, validation, and all data were obtained. After going through 

hundreds of model trials with updated survey results and independent variable combinations, the selection 

of the best-performing models was done based on sensitivity analysis rather than statistical accuracy 

measures because it was found that the models with the best statistical measures did not provide the logical 

and realistic pavement response. Accordingly, the best-performing models were selected based on their 

prediction consistency and M&R actions even though their accuracy measures may seem to be insufficient. 

Figures 6 and 7 depict the statistical accuracy measures of the selected models for the two outputs: IRI and 

complimentary PCR. The plots indicate various outlier areas where IRI values are very high. It should be 

noted that the deterioration mechanism changes as the pavement section’s condition depreciates. 

Accordingly, it can be difficult for a prediction model to generalize all the deterioration mechanisms from 

poor to good ranking. The statistical measures can be considered sufficient enough to be used, especially 

with consideration of the complexity depreciation mechanism. One of the unique contributions of this study 

is the M&R integration into the prediction models. There is no comprehensive study in the literature, which 

involves M&R actions along with simple pavement section characteristics for the determination of the 

pavement performance prediction.   
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As illustrated in Figure 7, the depiction of flexible pavement reveals a progressive deterioration trend 

over time, culminating in the implementation of Maintenance and Rehabilitation (M&R) actions in the year 

2024. This simulation of pavement response is derived through the utilization of a user-friendly Graphical 

User Interface (GUI) designed for flexible pavement analysis. Within this interface, users have the 

flexibility to choose both the projection timeline and the specific years for Maintenance and Rehabilitation 

activities. The graphical representation in Figure 7 visually captures the evolving condition of the flexible 

pavement, highlighting its susceptibility to wear and tear over the considered period. The deterioration 

trajectory underscores the importance of timely intervention through M&R strategies in 2024, serving as a 
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Figure 6. Observed vs. predicted IRI (right) and PCR (left) for 2022 CESAL 

Figure 7. IRI projection for section ID 9155 with M&R applied in the year 2024 
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pivotal point in the lifecycle of the pavement system. The interactive nature of the GUI empowers users to 

customize their analysis by selecting the desired projection period and pinpointing the years for scheduled 

Maintenance and Rehabilitation actions. This feature enhances the adaptability of the simulation tool, 

allowing stakeholders to make informed decisions based on the anticipated performance and longevity of 

the flexible pavement infrastructure. 

As can be seen from Figure 7, flexible pavement indicates deterioration over time until the M&R actions 

take place in the year 2024. This pavement response simulation is generated by the Graphical User Interface 

(GUI) for flexible pavement where the user can select the projection and the M&R years. 

Table 6. Flexible Model Statistics for 2022 CESAL IRI <=5m/km Model 

Model IRI (m/km) 
Complimentary 

PCR 

Model Structure 19 – 6 – 9 - 20000 - 2 

Training 

MARE 25.74 24.37 

R² 0.31 0.25 

ASE 0.00003 0.01050 

Testing 

MARE 25.56 24.97 

R² 0.30 0.23 

ASE 0.00003 0.01117 

Validation 

MARE 25.50 25.03 

R² 0.30 0.24 

ASE 0.00003 0.01133 

All data 

MARE 20.81 20.81 

R² 0.43 0.36 

ASE 0.00003 0.00812 

 

Table 6 shows the statistical accuracy measures of the selected models. The model statistics for training, 

testing, and validation have shown a very consistent trend, which indicates that the data distribution for the 

model processing was done systematically. The model structure is presented with 19 inputs, 6 initial hidden 

nodes, 9 final hidden nodes, 20000 iterations, and two outputs. Once the model structure was selected based 

on the model testing and validation performance, all data was combined the trained on every single dataset 

in the database. In this step, the model extracts all the knowledge from each dataset and generates reliable 

predictions based on the history of the data and knowledge gained from this process.  

User Interface for Flexible Database 

Once the best-performing model was selected, all the modeling parameters from the machine learning 

platform were extracted into an Excel Spreadsheet. Using the development toolboxes and Visual Basic 

Programming language, the Graphical User Interface (GUI) was generated shown in Figure 8. For easy use, 

all of the independent parameters required from the user regarding the pavement section were integrated 

into the spreadsheet. Using the dropdown menu next to Section ID, the user can select the section number 

of the flexible pavement, and the spreadsheet is automatically updated with the associated section 

characteristics. The user also has the option to fill in this information manually. The other section where 

the user required the provide information is the projection year and the rehabilitation year. All the 

information required from the user is highlighted with orange color text. As the user clicks on the 

“PROJECTIONS" button, another menu pops up to ask about the estimated ESAL increase in percent for 

the projected years. Once this form is submitted, the predictions for the desired years will be generated in 

a table and the plots for PCR and IRI will be shown below the generated table.   
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Rigid Pavements 
Rigid pavement is constructed using either cement concrete or reinforced concrete slabs, with grouted 

concrete roads falling within the semi-rigid pavement category. The design philosophy behind rigid 

pavement centers on creating a structurally robust cement concrete slab capable of withstanding traffic-

induced loads. This type of pavement exhibits high rigidity and a substantial modulus of elasticity, 

effectively distributing the load over a relatively broad area of the underlying soil. Unlike flexible 

pavements, minor fluctuations in subgrade strength exert minimal influence on the structural capacity of 

rigid pavement. In the design process, the flexural strength of the concrete slab takes precedence over the 

strength of the subgrade. This distinctive property enables the rigid pavement to bridge over localized 

failures and areas of insufficient subgrade support when the subgrade undergoes deflection beneath the 

pavement. This resilience is attributed to the slab action, emphasizing the robust and load-distributing 

characteristics inherent to rigid pavement designs. Rigid pavements in this study are considered into two 

categories: jointed concrete pavements (JCP) and continuously reinforced concrete pavements (CRCP). 

Accordingly, two separate models and GUIs were developed. In the following sections, the model statistics 

and GUIs are presented in detail. It should be noted that the average life span of a rigid pavement is about 

30 years. The models developed in this study utilized 12 years of data history which does not fully cover 

the life span of a rigid pavement.  

Jointed Concrete Pavements (JCP) 

Utilizing contraction joints to mitigate random cracking, Jointed Concrete Pavement (JCP) stands out 

as a widely adopted paving method. This pavement system, extensively employed by both Departments of 

Transportation (DOTs) and municipalities, strategically incorporates a sufficient number of joints to govern 

the location of anticipated natural cracks. All intentional cracking is directed to occur precisely at these 

joints, minimizing the occurrence of cracks elsewhere in the slabs. Notably, JCP does not incorporate any 

steel reinforcement. Concrete pavement joints fall into distinct categories, each serving a specific function 

to ensure optimal performance under traffic for pavements, highways, or airfields. Up to date, there are 101 

Figure 8. Graphical User Interface for Flexible Pavement 
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JCP sections in Mississippi. To develop a JCP performance prediction model, a total of 1080 datasets were 

utilized. The database included 2022 Survey results for the sections. The final model structure was 

determined after hundreds of trials performed. 15 inputs were utilized to predict 2 outputs: IRI and PCR. 

The initial and final hidden nodes were found to be 3 and 6, respectively, after many trials with 20,000 

iterations. The statistical accuracy measures were presented in Table 7 for the two outputs. Graphical 

representations of the model for the predicted IRI and complementary PCR versus observed are shown in 

Figure 9. Randomly selected section simulation with M&R events is depicted in Figure 10. The statistical 

accuracy measures of the best-performing model for ANN model development stages: training, testing, 

validation, and all data are shown in Table 7.        

 

Figure 9. Observed vs. predicted PCR (left) and IRI (right) for JCP 2022 

 

  

Figure 10. IRI projection for section ID 80 with M&R applied in the year 2023 
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As depicted in Figure 10, the response of JCP reveals a gradual decline over time, reaching a point 

necessitating Maintenance and Rehabilitation (M&R) actions in 2023. This pavement response simulation 

utilizes a user-friendly Graphical User Interface (GUI) designed for JCP performance analysis, offering 

users the flexibility to choose the projection timeline and specific Maintenance and Rehabilitation years. 

The graphical representation visually captures the evolving state of the JCP, emphasizing its susceptibility 

to wear and tear. The trajectory of deterioration underscores the significance of timely M&R strategies in 

2023, marking a pivotal phase in the pavement system's lifecycle. The interactive GUI empowers users to 

customize their analysis, selecting the desired projection period and pinpointing years for scheduled 

Maintenance and Rehabilitation actions, enhancing the tool's adaptability for informed decision-making. 

As evident in Figure 10, JCP exhibits a deterioration trend until M&R actions are undertaken in 2023. This 

simulation, facilitated by the Graphical User Interface (GUI) for JCP, allows users to choose the projection 

and M&R years. 

Table 7. JCP Models Statistics for Complementary PCR and IRI 

 IRI  PCR 

Model Structure 15 – 3 – 6 – 20000 – 2  

Training 

MARE 6.23 7.72 

R² 0.95 0.75 

ASE 0.000003 0.00130 

Testing 

MARE 8.44 11.35 

R² 0.69 0.52 

ASE 0.000012 0.00227 

Validation 

MARE 12.28 7.76 

R² 0.74 0.73 

ASE 0.000013 0.00087 

All data 

MARE 6.31 6.78 

R² 0.93 0.74 

ASE 0.000004 0.00104 

 

 

Table 7 displays the statistical accuracy measures of the chosen models. The model statistics for training, 

testing, and validation exhibit a remarkably consistent trend, underscoring the systematic approach 

employed in processing the model data distribution. The model structure comprises 15 inputs, 3 initial 

hidden nodes, 6 final hidden nodes, 20,000 iterations, and two outputs. After finalizing the model structure 

based on testing and validation performance, all data was combined and trained on every dataset in the 

database. During this step, the model embraces knowledge from each dataset, generating reliable 

predictions rooted in the historical data and insights gained from this process. 
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User Interface for Jointed Concrete Pavement 

 

 

 

 

 

 

 

 

After the identification of the best-performing model, all modeling parameters from the machine 

learning platform were transferred to an Excel Spreadsheet. Employing development toolboxes and the 

Visual Basic Programming language, a user-friendly Graphical User Interface (GUI) shown in Figure 11 

was precisely designed and generated. To enhance user convenience, the spreadsheet seamlessly 

incorporates all independent parameters related to the pavement section. Within the spreadsheet, users can 

effortlessly select the section number of the flexible pavement from a dropdown menu next to Section ID. 

Consequently, the spreadsheet dynamically updates the pertinent characteristics associated with the chosen 

section. Alternatively, users have the flexibility to manually input this information. The critical information 

required from the user, including the projection year and rehabilitation year, is highlighted in orange text 

for easy identification. Upon clicking the "PROJECTIONS" button, a supplementary menu emerges, 

prompting the user to input the estimated Equivalent Single Axle Load (ESAL) increase percentage for the 

projected years. Upon submission of this form, the model generates predictions for the specified years, 

presenting the results in a comprehensive table. Additionally, accompanying plots for Pavement Condition 

Rating (PCR) and International Roughness Index (IRI) are displayed below the generated table. This user-

centric approach ensures a seamless and efficient interaction with the predictive modeling tool. 

Continuously Reinforced Concrete Pavement (CRCP) 

Continuously Reinforced Concrete Pavements (CRCP) represent a distinctive type of concrete pavement 

distinguished by the absence of transverse contraction joints. In this design, transverse cracks are 

anticipated within the slab at intervals typically ranging from 1.5 to 6 feet (0.5 to 1.8 meters). The key 

feature of CRCP lies in the substantial inclusion of embedded reinforcing steel, constituting approximately 

0.6-0.7% of the cross-sectional area, ensuring a tight cohesion of cracks. The determination of an optimal 

spacing between these cracks is an integral part of the pavement design process. While CRCP designs tend 

to incur higher initial costs compared to Jointed Plain Concrete Pavement (JPCP) or Jointed Reinforced 

Concrete Pavement (JRCP) designs due to increased quantities of steel, they often exhibit superior long-

term performance. Typically boasting design service lives of 30-40 years, CRCP demonstrates a compelling 

cost-effectiveness over time. Many state highway agencies opt for CRCP designs, particularly in heavily 

Figure 11. Graphical User Interface for Jointed Concrete Pavement 
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trafficked urban corridors where the pavement is subjected to tens of millions of equivalent load repetitions 

over its service life. Moreover, CRCP's tight crack widths and minimal vertical movement between adjacent 

joints, attributed to the restraint provided by the embedded steel, make it an excellent candidate for 

resurfacing with asphalt concrete. This characteristic reduces the frequency and severity of reflective 

cracking, enhancing the overall durability and resilience of the pavement. in Mississippi, there are 44 

sections of CRCP with 512 associated datasets.   

To construct a performance prediction model for CRCP, a comprehensive dataset comprising 512 entries 

was employed, encompassing results from the 2022 survey of various sections. The final model architecture 

emerged after rigorous experimentation involving numerous trials. Fifteen input parameters were 

strategically chosen to forecast two key outputs: the International Roughness Index (IRI) and Pavement 

Condition Rating (PCR). Through an iterative process involving 6,100 iterations, the optimal configuration 

for the model was determined, with the initial and final hidden nodes set at 5 and 8, respectively. Table 8 

presents the statistical accuracy measures for the two predicted outputs, IRI and PCR. Additionally, Figure 

12. Observed vs. predicted IRI (right) and PCR (left) for CRCP 2022provides graphical representations of 

the model, juxtaposing predicted IRI and complementary PCR against observed values.  

 

 

 

 

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

P
re

d
ic

te
d

Actual

CRCP Model - Complimentary PCR 
Predicted x Observed

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

P
re

d
ic

te
d

Actual

CRCP Model - IRI Predicted x Observed

Figure 12. Observed vs. predicted IRI (right) and PCR (left) for CRCP 2022 



 

47 

 

Figure 13. IRI projection for section ID 809 with M&R applied in the year 2023 

Figure 13 offers a simulation of randomly selected sections with Maintenance and Rehabilitation (M&R) 

events. Table 8 further details the statistical accuracy measures for the best-performing model across 

various stages of artificial neural network (ANN) development, including training, testing, validation, and 

the entire dataset. This multifaceted approach ensures a robust and reliable JCP performance prediction 

model. 

 

Table 8. CRCP Models Statistics for Complementary PCR and IRI 

Model IRI  
Complementary 

PCR 

Model Structure 15 – 5 – 8 – 6100 - 2 

Training 

MARE 8.11 17.19 

R² 0.81 0.50 

ASE 0.000008 0.00415 

Testing 

MARE 9.84 26.98 

R² 0.59 0.11 

ASE 0.000008 0.00840 

Validation 

MARE 16.44 26.17 

R² 0.03 0.13 

ASE 0.000023 0.00744 

All data 

MARE 9.88 12.75 

R² 0.65 0.56 

ASE 0.000011 0.00255 

 

The good agreement between the observed and predicted outputs can be inferred from Table 8. Training, 

testing, validation, and all data statistics are significant and can be considered in the good range. It can be 

noted that IRI prediction error is less than Complimentary PCR prediction errors. Both IRI and 

complimentary PCR prediction errors are acceptable to be considered as performance models.  
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Graphical User Interface for Continuously Reinforced Concrete Pavement (CRCP) 

 

Following the selection of the best-performing model, its parameters were transferred to an Excel 

Spreadsheet. Utilizing development toolboxes and Visual Basic Programming, a user-friendly Graphical 

User Interface (GUI) was crafted and illustrated in Figure 14. The spreadsheet integrates all independent 

parameters related to the pavement section for user convenience. Users can effortlessly choose the flexible 

pavement section number from a dropdown menu next to Section ID, dynamically updating associated 

characteristics. Alternatively, users can manually input information. Key user inputs, such as projection and 

rehabilitation years, are highlighted in orange for easy identification. Upon clicking the "projections" 

button, a supplementary menu prompts users to input the estimated ESAL increase percentage for projected 

years. Upon form submission, the model generates predictions, presenting results in a comprehensive table 

with accompanying PCR and IRI plots.  

Composite Pavements 
Composite pavement, a sophisticated hybrid construction, seamlessly integrates the strengths of both 

asphalt and concrete to create a robust and resilient road surface. This innovative pavement structure 

typically comprises a foundational layer of concrete and a top layer of asphalt. The concrete layer serves as 

the structural backbone, imparting superior load-bearing capacity and stability to the pavement, while the 

asphalt overlay functions as the protective and durable surface. The inherent synergy between the two 

materials allows composite pavements to deliver exceptional performance in diverse roadway applications. 

One of the primary advantages of composite pavements lies in their ability to rehabilitate existing roadways 

effectively. By leveraging the structural integrity of concrete and the smooth, wear-resistant properties of 

asphalt, these pavements can breathe new life into aging infrastructure. In the realm of pavement 

maintenance and enhancement, asphalt overlays play a pivotal role in renewing distressed concrete surfaces. 

This approach involves applying a fresh layer of asphalt over worn or damaged concrete, effectively 

renewing the pavement's appearance and functionality. The asphalt overlay acts as a protective shield, 

shielding the underlying concrete from further deterioration while providing a smooth and skid-resistant 

driving surface. The significance of composite pavements extends beyond their physical composition; it is 

also rooted in data-driven insights and predictive modeling. As of 2022, the MDOT database stands as a 

Figure 14. Graphical User Interface for Continuously Reinforced Pavement 
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testament to the extensive utilization and monitoring of composite pavements. Within this database, a 

remarkable 1141 composite pavement sections have been meticulously documented, accompanied by a 

comprehensive set of 12406 historical pavement distress data points. This wealth of data serves as a 

valuable resource for the development of predictive models that enhance our understanding of composite 

pavement behavior over time. By analyzing the historical distress data, patterns, trends, and key indicators 

that contribute to the formulation of effective maintenance strategies and future pavement design 

improvements can be observed. Its application in rehabilitating existing roadways and the integration of 

predictive modeling based on extensive data collection underscore its importance in the ongoing evolution 

of sustainable and resilient infrastructure. 

 

Figure 16. IRI projection for section ID 4558 with M&R applied in the year 2019 
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Table 9. Composite Pavement Models Statistics for Complementary PCR and IRI 

Model IRI PCR 

Model Structure 15- 3 - 4 – 20000 - 2 

Training 

MARE 21.54 17.00 

R² 0.50 0.39 

ASE 0.00002 0.00278 

Testing 

MARE 24.05 18.74 

R² 0.41 0.30 

ASE 0.00003 0.00314 

Validation 

MARE 22.17 17.43 

R² 0.48 0.34 

ASE 0.00003 0.00294 

All data 

MARE 22.14 17.30 

R² 0.48 0.37 

ASE 0.00002 0.00288 

Examining Table 9 reveals encouraging statistical accuracy measures for composite pavement. While 

the overall data statistics may be deemed low, it's noteworthy that error statistics fall within a favorable 

range. Additionally, Figure 15 clearly illustrates that the model effectively captures the observed trend in 

the pavement response. The combination of the insightful plots and the robust statistical quantities suggests 

that this model can be regarded as effective in representing the complex dynamics of composite pavement 

behavior. Despite these positive indicators, a closer look at the sensitivity analysis in Figure 16 reveals 

certain inconsistencies. Notably, it suggests that minor rehabilitation efforts may paradoxically worsen the 

pavement condition, a scenario that contradicts mechanical expectations. This anomaly calls for a careful 

reassessment of the model's sensitivity to rehabilitation actions, emphasizing the need for further refinement 

and calibration. To enhance the model's reliability, future iterations could involve a more comprehensive 

calibration process and a thorough examination of the specific mechanisms influencing the pavement's 

response to rehabilitation efforts. Additionally, ongoing data collection and integration of historical records 

could contribute to a more nuanced understanding, refining the model for more accurate predictions and 

insights into the performance of composite pavements over time. 

Graphical User Interface for Composite Pavement (CRCP) 

Figure 17. Graphical User Interface for Continuously Reinforced Pavement 
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After selecting the top-performing model, its parameters were transferred to an Excel Spreadsheet. 

Utilizing development toolboxes and Visual Basic Programming, a user-friendly Graphical User Interface 

(GUI) was designed (see Figure 17). The spreadsheet consolidates all independent parameters related to the 

pavement section for user convenience. Users can easily select the flexible pavement section number from 

a dropdown menu next to Section ID, dynamically updating associated characteristics. Alternatively, users 

have the flexibility to manually input information. Crucial user inputs, like projection and rehabilitation 

years, are highlighted in orange for quick identification. Clicking the "projections" button triggers a 

supplementary menu, prompting users to input the estimated ESAL increase percentage for projected years. 

Upon form submission, the model generates predictions, presenting results in a comprehensive table with 

accompanying PCR and IRI plots. 

Conclusions 
In this study, the distress data from pavement sections in Mississippi was used to develop the 

performance prediction models using the dynamic sequential Artificial Neural Networks (ANNs) approach 

with a backpropagation algorithm. It is a known fact that the pavement condition in the current year is 

highly dependent on the previous year’s condition. Accordingly, the dynamic sequential ANNs modeling 

approach is the most suitable approach for the pavement performance models. The pavement sections were 

categorized into flexible, rigid, and composite. IRI and PCR are the common outputs to evaluate the 

condition of the pavement sections and are accordingly utilized for all the developed models. Rehabilitation 

actions were assigned based on IRI and PCR measurements. All the models with common and varying 

input(s) and output(s) are represented in Table 2. All the future predictions, up to 12 years of data history, 

are based on the survey data collected in 2010. All the developed models have significant model statistics, 

which makes them useable to assess the condition of the particular type of pavement.  

Flexible Pavement 

A substantial amount of effort was dedicated to establishing a robust and coherent database for flexible 

pavement, encompassing over 40,000 data entries. Through numerous iterations, the optimal variable 

combinations were meticulously identified, marking the finalization of model trials. The performance of 

the flexible pavement model is detailed in Table 6, and the graphical accuracy plot in Figure 6 showcases 

promising outcomes. While conventional statistical measures might not overtly suggest high accuracy, a 

closer examination of the sensitivity analysis, as depicted in Figure 7, reveals a logical pavement response 

within the developed model. Notably, most prediction errors are concentrated in higher International 

Roughness Index (IRI) values, affirming the dynamic nature of the deterioration mechanism as the 

pavement degrades over time. An insightful recommendation arising from these findings is to conduct an 

additional study to pinpoint significant changes and propose separate models for distinct deterioration 

patterns. Recognizing the inherent challenges in characterizing all pavement sections with a single model 

due to unquantifiable uncertainties, the study underscores the success of the flexible performance model in 

effectively characterizing the behavior of flexible pavement response. This achievement underscores the 

model's robustness in capturing the nuanced dynamics of flexible pavement, laying the groundwork for 

further refinement and specialized modeling to enhance predictive accuracy in specific degradation 

scenarios. 

Rigid Pavement (JCP and CRCP) 

While the quantity of rigid pavements is notably less compared to flexible pavements, the datasets used 

for modeling are proportionately smaller. Despite this, both JCP and CRCP performance prediction models 

exhibit remarkably robust statistical accuracy measures, as evident in Tables 9 and 10. Comprehensive 
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graphical accuracy comparisons for these two pavement types are depicted in Figures 9 and 12, showcasing 

the models' effectiveness in capturing pavement behavior. The sensitivity analysis results for JCP and 

CRCP, presented in Figures 10 and 13, further underscore the models' success in characterizing pavement 

behavior, as reflected in both statistical measures and performance indicators. However, it's crucial to note 

that the data collection period employed in this study is relatively small when considering the extensive 

lifespan of CRCP and JCP pavements. To ensure a comprehensive understanding and proper capture of the 

response to Pavement Condition Rating (PCR) and International Roughness Index (IRI) rehabilitation 

actions, it is recommended to incorporate more data spanning the entire lifespan of CRCP and JCP. This 

expansion in data coverage would enhance the models' capacity to provide accurate predictions and insights 

into the long-term performance and deterioration patterns of rigid pavements. 

Composite Pavement 

The statistical accuracy measures for the composite pavement performance model are presented in Table 

13 and the graphical accuracy plots for IRI and PCR are shown in Figure 15. Examining Table 13 reveals 

promising statistical accuracy measures for composite pavement. While all data statistics are generally low, 

it's important to note that error statistics fall within a favorable range. Additionally, Figure 15 illustrates 

that the model successfully captures the observed trend. Combining both the plots and statistical quantities, 

this model can be deemed reliable. Nevertheless, the sensitivity analysis in Figure 16 presents some 

inconsistencies, such as the counterintuitive notion that minor rehabilitation efforts worsen the pavement 

condition, which contradicts mechanical expectations. For this reason, minor rehabilitation responses 

should be carefully examined and considered in between no rehabilitation and major rehabilitation actions. 

Even though a significant amount of data (i.e. 12406 datasets from 1141 sections) was utilized, the 

performance of the model is not as desirable. This could be due to multiple reasons: 1- the model needs 

more calibration trials, and 2- the lack of composite pavement characteristics missing from the database. It 

is believed that further calibration trials and more data inclusion in the model training can solve this problem 

as it’s known that composite pavement has a sophisticated mechanistic behavior.   

Overall 

The developed models effectively characterize the pavement response across various significance levels. 

Users can access all the models through the provided graphical user interface. Enhanced accuracy is 

anticipated with additional surveys as more historical data is incorporated into the model training process. 

Further calibration is necessary for composite pavement performance models to achieve a more logical 

rehabilitation response. Integration of these models into MDOT's decision trees is feasible. However, 

caution is advised in the utilization of the generated results.  

Implementation Plan/Recommendations 
MDOT can utilize all the developed performance models via the developed GUIs for each pavement 

type. They were designed and implemented to be user-friendly and they can be used by anybody without 

the knowledge of modeling techniques. Plots and tables are generated automatically as the simulation is 

started.  It is recommended that the generated predictions have errors and should be considered as guidance 

even though some models have pretty good accuracy. It would be beneficial to compare the future survey 

results with the predictions from these models. It is also highly recommended that these models should be 

updated with the new survey results. The more data the models are trained with, the better accuracy will be 

achieved over the years. The pavement response will improve with more and more data.  
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Products  
There are four products from this study:  

1- Flexible Pavement Performance Model: This model can be used via the graphical user interface 

developed in Microsoft Excel, labeled as “GUI_FLEX” 

2- Jointed Concrete Pavement Performance Model: This model can be utilized via the graphical user 

interface developed in Microsoft Excel, labeled as “GUI_JCP”  

3- Continuously Reinforced Concrete Pavement Performance Model: This model can be utilized via 

the graphical user interface developed in Microsoft Excel, labeled as “GUI_CRCP”   

4- Composite Pavement Performance Model: This model can be utilized via the graphical user 

interface developed in Microsoft Excel, labeled as “GUI_Composite”   

 

Three students were funded from this study who are listed below: 

1- Will Andrews, Master’s Degree in Engineering Science, 2020, employed by MDOT in Jackson, 

MS.  

2- Tennant Duckworth, Master’s Degree in Engineering Science, 2020, employed by Eustis 

Engineering LLC in New Orleans, LA.  

3- Rulian Ferreira De Almeida Barros, Doctor of Philosophy in Engineering Science, 2022, 

Employed by Crawford, Murphy & Tilly in Indianapolis, IN.  
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